source: t29-www/en/computer/transistors.php @ 616

Last change on this file since 616 was 299, checked in by heribert, 12 years ago

Zahlreiche Bugfixes, vor allem an der englischen Seite und im Deutschen. Letzte Änderungen, bevor Homepage offiziell ihren Dienst antritt.

  • Property svn:keywords set to Id
File size: 7.6 KB
Line 
1<?php
2        $seiten_id = 'transistoren';
3        $version = '$Id: transistors.php 299 2012-09-19 09:38:55Z sven $';
4        $title = 'Transistorized calculators';
5       
6        require "../../lib/technikum29.php";
7?>
8    <h2>Transistorized calculators</h2>
9   
10    <!-- klingt scheiße: <p class="progress10">Jolt by the calculators featuring all tube technology, now a vehement race of the development of transistorised second-generation calculators began.</p>-->
11
12    <p>
13           After the <a href="/en/computer/electron-tubes.php">ANITA tube calculator</a>,
14           the development of transistorised second-generation calculators began. Due to the
15           increasing number of users, the development was very lucrative, even considering the
16           enormous costs.
17           <br>Every company that released a device designed a completely new architecture.
18           Many different concepts emerged. The following devices are a
19           selection of very early devices (year of manufacture 1964-1965).
20        </p>
21
22        <h3>IME 84: The world's first transistorized desk calculator (1964)</h3>
23    <div class="box center auto-bildbreite">
24        <img src="/shared/photos/rechnertechnik/ime84.jpg" alt="IME 84" width="694" height="415" />
25        <p class="bildtext">
26                   <b>IME 84</b> (<i>Industria Macchine Elettroniche</i>) was the world's first
27                   desk calculator using transistors. This represented enormous progress, compared to the ANITA.
28           Using <a href="/en/computer/storage-media.php#Core_memory">core memory</a>, there was
29                   much more memory, allowing many more application fields.
30           <br>This calculator is at least able to exponentiate a number, but it cannot yet extract
31                   a root.
32                   <br>The design of this device is quite appealing. In comparison, the German device made
33                   by Olympia looks ungraceful.
34                </p>
35    </div>
36        <div class="box left clear-after">
37                <img src="/shared/photos/rechnertechnik/robox103.jpg" alt="Robox 103" width="214" height="211" />
38                <p class="bildtext">
39                   The device has a strange interface on the left side to connect the <b>ROBOX 103</b>
40                   (see picture on the left). Using this small device, one could enter numbers much faster.
41                   Turning the switch to "Addition" enables auto-adding the number just entered after a short
42                   timeout. This yields a great disadvantage: If the operator was too slow (or made some
43                   short break), only parts were taken in the memory, without any feedback. Thus the complete
44                   calculation was error-prone. The successor "IME 86" therefore didn't feature an ROBOX
45                   interface any more.
46                </p>
47        </div>
48       
49        <h3>Canon Canola 130</h3>
50        <div class="box left clear-after">
51                <img src="/shared/photos/rechnertechnik/canola-130.jpg" alt="The Canola 130 (above in closed state, below opened, from the back)" width="380" height="575" />
52                <img src="/shared/photos/rechnertechnik/canola-display.jpg" alt="Canola 130 display macro photography" width="148" height="138" />
53                <p class="bildtext">
54                        In 1964, Canon built the first Japanese electronic desk calculator, using germanium transistors
55                        and flip-flop memories. Visually it looks like a prototype.
56                        The whole back of the device consists of very big boards. They are not plugged in, but soldered, at the
57                        cost of ease of service. This was typical for the year 1964, when companies tried to get their device
58                        onto the global market.
59                        <br>The display is remarkable. Instead of using Nixie tubes, the device features 143 lamps and a lot of
60                        light conductors to create digits and the decimal point. The only advantage of this technology over
61                        Nixie tubes is the appealing luminescent paint.
62                </p>
63        </div>
64
65        <h3>Olympia RAE 4/30-3 und Wanderer Conti</h3>
66        <div class="box center auto-bildbreite">
67                <img src="/shared/photos/rechnertechnik/olympia-wanderer.jpg" alt="Olympia RAE 30 (left) and Wanderer Conti (right)" width="694" height="278" />
68        <p class="bildtext center"><b>Olympia RAE 4/30-3 (left) and Wanderer Conti (right)</b></p>
69        </div>
70
71        <p>
72            The <b>Olympia-Werke AG</b> (Germany) invented the "Elektronischen Vierspezies-Rechenautomat" (electronic
73                calculator for adding, substracting, multiplying and dividing). The distinctive feature was floating point
74                arithmetic, 3 ALUs, 1 storage unit and 3 "memory units" (3 random use registers).
75                The device contains a 384 bit manually threaded core memory, germanium transistors and Nixie tubes, but no
76                external interface. Therefore users could not store or load programs. Olympia missed this important step,
77                so the calculator became obsolete soon. The design was also quite outdated, and the device turns yellow
78                quickly in the sun.
79        <br>The same device was resold in the USA by <b>Monroe</b> with the model number 770.
80        </p>
81        <p>
82            The legendary <b>WANDERER-WERKE AG</b> were a typical company specialized on office machines and launched
83                the WANDERER CONTI in 1965. You can read the original prospectus <!--sic--> of the <a class="go" href="/en/devices/wanderer_conti.php"
84                title="Wanderer Conti original brochure">"first printing electonic universal automaton"</a>. This leading role
85                did only lasted for a few weeks, since Olivetti and Diehl followed close behind.
86        </p>
87
88        <!--
89    <p>The first digital transistorised calculator was produced in Italy (IME 84, 1964). In 1965,
90        OLYMPIA built a calculator which was capable of handling floating-point numbers and at the
91        same time, the company WANDERER released the .</p>
92        -->
93    <!--Gibts ja jetzt mit Bild: FRIDEN from the USA surprised with a calculator that displayed the contents of four registers on one cathod ray tube at the same time. But all these calculators could only compute with the four fundamental arithmetic operations, like many others. At least some of them could already extract a root. A core memory mostly served as storagemedia. The memory shown below is especially illustrative.</p>-->
94
95        <h3>FRIDEN 130 (132)</h3>
96    <div class="box center auto-bildbreite">
97        <img src="/shared/photos/rechnertechnik/friden130.jpg" alt="Friden 130" width="694" height="497" />
98        <p class="bildtext center"><b>FRIEDEN 130</b></p>
99        </div>
100        <p>
101            The American <b>Friden Calculating Machine Company</b> was already a pioneer in desk
102                calculator technology: in the mid-50s they built the first mechanical calculator in series
103                that was able to extract a root.
104        </p>
105        <div class="box left clear-after">
106        <img src="/shared/photos/rechnertechnik/friden-display.jpg" alt="Display des Friden 130" width="274" height="134" />
107                <p class="bildtext">
108                    The <b>FRIDEN 130</b> was announced in 1964. It was the first desktop calculator featuring a
109                    CRT display, using an oscillocope tube to display the contents of four internal registers of the machine.
110                The memory is based on a <a class="go" href="storage-media.php#Magnetostrictive_memory">magnetostrictive line</a>.
111            <br />The overall design of the calculator is quite futuristic - the machine might well be found in
112                    a space travel movie of that time. The smallest model featuring only the four basic arithmetic
113                    operations was sold for about 5000 DM while the larger model, the FRIDEN 132, which included a
114                    square root function, was priced at 6700 DM.
115                </p>
116    </div>
117
118        <!--
119    <p>Most of these calculators like many other brands were only capable of performing the four basic
120        arithmetic operations although some machines had extra provisions for calculating square roots. In most
121        cases a small <a href="storage-media.php#core-memory">core memory</a> was employed for internal storage.</p>
122        <p>You can read further details at the <a class="go" href="/en/details1.php" title="Details 1">tabular list of desk calculators</a></p>
123        -->
Note: See TracBrowser for help on using the repository browser.
© 2008 - 2013 technikum29 • Sven Köppel • Some rights reserved
Powered by Trac
Expect where otherwise noted, content on this site is licensed under a Creative Commons 3.0 License