source: t29-www/en/computer/transistors.shtm @ 181

Last change on this file since 181 was 181, checked in by sven, 14 years ago

Synchronisiation der englischen Uebersetzung.

  • Fast alle englischen Dateien veraendert/aktualisiert.

Einige Aenderungen in der deutschen Version:

  • unter de/geraete/: Viele "Ruecklink"-Korrekturen, die jetzt ordentlich auf Ueberschriften verweisen konnen, statt wie frueher wild in den Text
  • anita.shtm: Als veraltet markiert (automatische Weiterleitung)
  • unter de/impressum.shtm sowie de/rechnertechnik: Rohtextformatierung verschoenert und Links repariert.

-- Sven

  • Property svn:keywords set to Id
File size: 8.8 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4<head><!--#set var="title"        value="Transistorized calculators"
5   --><!--#set var="location"     value="transistoren"
6   --><!--#set var="part"         value="computer"
7   --><!--#set var="url_de"       value="rechnertechnik/transistoren.shtm"
8   --><!--#set var="prev"         value="electron-tubes.shtm"
9   --><!--#set var="prev_title"   value="Desk calculators with electron tubes"
10   --><!--#set var="next"         value="programmable.shtm"
11   --><!--#set var="next_title"   value="Programable second-generation calculators"
12 --><title>Technikum29 - <!--#echo var="title" --></title>
13
14    <!--#include virtual="/en/inc/head.inc.shtm" -->
15    <meta name="keywords" lang="de" content="Kernspeicher, Wanderer Conti, Erste Rechner mit Transistoren, IME 84" />
16    <meta name="keywords" lang="en" content="technikum, transistorised calculators, seccond-generation, calculators, IME 84, OLYMPIA, WANDERER, FRIDEN" />
17        <meta name="t29.SVN" content="$Id: transistors.shtm 181 2010-09-01 02:12:03Z sven $" />
18</head>
19<body>
20<!--#echo encoding="none" var="heading" -->
21<div id="content">
22    <h2><!--#echo var="title" --></h2>
23   
24    <!-- klingt scheiße: <p class="progress10">Jolt by the calculators featuring all tube technology, now a vehement race of the development of transistorised second-generation calculators began.</p>-->
25
26    <p>
27           After the <a href="/en/computer/electron-tubes.shtm">ANITA tube calculator</a>,
28           the development of transistorised second-generation calculators began. Due to the
29           increasing number of users, the development was very lucrative, even facing the
30           enormous costs.
31           <br>Every company that released a device designed completely another architecture.
32           Soon afterwards, many different concepts emerged. The following devices are a
33           selection of very early devices (year of manufacture 1964-1965).
34        </p>
35
36        <h3>IME 84: The world's first transistorized desk calculator (1964)</h3>
37    <div class="box center auto-bildbreite">
38        <img src="/shared/photos/rechnertechnik/ime84.jpg" alt="IME 84" width="694" height="415" />
39        <p class="bildtext">
40                   <b>IME 84</b> (<i>Industria Macchine Elettroniche</i>) was the world's first
41                   desk calculator using transistors. This was an enormous progress, compared to the ANITA.
42           Using a <a href="/en/computer/storage-media.shtm#Core_memory">core memory</a>, there was
43                   much more memory, allowing many more application fields.
44           <br>This calculator is at least able to exponentiate a number, but it cannot yet extract
45                   a root.
46                   <br>The design of this device is quite appealing. In comparisation, the german device made
47                   by Olympia looks ungracefully.
48                </p>
49    </div>
50        <div class="box left clear-after">
51                <img src="/shared/photos/rechnertechnik/robox103.jpg" alt="Robox 103" width="214" height="211" />
52                <p class="bildtext">
53                   The device has a strange interface on the left side to connect the <b>ROBOX 103</b>
54                   (see picture on the left). Using this small device, one could enter numbers much faster.
55                   Turing the switch to "Addition" enables auto-addding the number just entered after a short
56                   timeout. This yields the great disadvantage: If the operator was too slow (or made some
57                   short break), only parts are taken over in the memory, without any response. Thus the complete
58                   calculation was error-prone. The successor "IME 86" therefore didn't feature an ROBOX
59                   interface any more.
60                </p>
61        </div>
62       
63        <h3>Canon Canola 130</h3>
64        <div class="box left clear-after">
65                <img src="/shared/photos/rechnertechnik/canola-130.jpg" alt="The Canola 130 (above in closed state, below opened, from the back)" width="380" height="575" />
66                <img src="/shared/photos/rechnertechnik/canola-display.jpg" alt="Canola 130 display macro photography" width="148" height="138" />
67                <p class="bildtext">
68                        In 1964, Canon built the first electronical desk calculator of Japan, using germanium transistors
69                        and flip flop memories. Optically it looks like a prototype.
70                        The whole back of the device consists of very big boards. They are not stucked, but soldered, at the
71                        cost of ease of service. This was typical for the year 1964, when companies tried to get their device
72                        as fast as possible on the global market.
73                        <br>The display is remarkable. Instead of using Nixie tubes, the device features 143 lamps and a lot of
74                        light conductors to create digits and the decimal point. The only advantage of this technology over
75                        Nixie tubes is the appealing luminescent paint.
76                </p>
77        </div>
78
79        <h3>Olympia RAE 4/30-3 und Wanderer Conti</h3>
80        <div class="box center auto-bildbreite">
81                <img src="/shared/photos/rechnertechnik/olympia-wanderer.jpg" alt="Olympia RAE 30 (left) and Wanderer Conti (right)" width="694" height="278" />
82        <p class="bildtext center"><b>Olympia RAE 4/30-3 (left) and Wanderer Conti (right)</b></p>
83        </div>
84
85        <p>
86            The <b>Olympia-Werke AG</b> (Germany) invented the "Elektronischen Vierspezies-Rechenautomat" (electronical
87                calculator for adding, substracting, multiplying and dividing). The distinctive feature was floating point
88                arithmetic, 3 ALUs, 1 storage unit and 3 "memory units" (3 random use registers).
89                The device contains a 384 bit manually threaded core memory, Germanium transistors and Nixie tubes, but no
90                external interface. Therefore users could not store or load programs. Olympia missed this important step,
91                thus the calculator became obsolete soon. The design was also quite outdated - the device turns yellow
92                quickly in the sun.
93        <br>The same device was reselled in the USA by <b>Monroe</b> with the type number 770.
94        </p>
95        <p>
96            The legendary <b>WANDERER-WERKE AG</b> were a typical company specialized on office machines and launched
97                the WANDERER CONTI in 1965. You can read the original prospect of the <a class="go" href="/en/devices/wanderer_conti.shtm"
98                title="Wanderer Conti original brochure">"first printing electonic universal automate"</a>. This leading role
99                did only last for some weeks, since Olivetty and Diehl continuously followed.
100        </p>
101
102    <p>The first digital transistorised calculator was produced in Italy (IME 84, 1964). In 1965,
103        OLYMPIA built a calculator which was capable of handling floating-point numbers and at the
104        same time, the company WANDERER released the .</p>
105    <!--Gibts ja jetzt mit Bild: FRIDEN from the USA surprised with a calculator that displayed the contents of four registers on one cathod ray tube at the same time. But all these calculators could only compute with the four fundamental arithmetic operations, like many others. At least some of them could already extract a root. A core memory mostly served as storagemedia. The memory shown below is especially illustrative.</p>-->
106
107        <h3>FRIDEN 130 (132)</h3>
108    <div class="box center auto-bildbreite">
109        <img src="/shared/photos/rechnertechnik/friden130.jpg" alt="Friden 130" width="694" height="497" />
110        <p class="bildtext center"><b>FRIEDEN 130</b></p>
111        </div>
112        <p>
113            The american <b>Friden Calculating Machine Company</b> was already pioneer in desk
114                calculation technology: In the mid-50s they built the first mechanical calculator
115                in series that was able to extract a root.
116        </p>
117        <div class="box left clear-after">
118        <img src="/shared/photos/rechnertechnik/friden-display.jpg" alt="Display des Friden 130" width="274" height="134" />
119                <p class="bildtext">
120                    In 1966 the <b>FRIDEN 130</b> was announced. It was the first desktop calculator featuring a
121                    CRT display using an oscillocope tube to display the contents of four internal registers of the machine.
122                The memory is based on a <a class="go" href="storage-media.shtm#Magnetostrictive_memory">magnetostrictive line</a>.
123            <br />The overall design of the calculator is quite futuristic - the machine might well be found in
124                    a space travel movie of that time. The smallest model featuring only the four basic arithmetic
125                    operations was sold for about 5000 DM while the larger model, the FRIDEN 132, which included a
126                    square root function was priced at 6700 DM.
127                </p>
128    </div>
129
130        <!--
131    <p>Most of these calculators like many other brands were only capable of performing the four basic
132        arithmetic operations although some machines had extra provisions for calculating square roots. In most
133        cases a small <a href="storage-media.shtm#core-memory">core memory</a> was employed for internal storage.</p>
134        <p>You can read further details at the <a class="go" href="/en/details1.shtm" title="Details 1">tabular list of desk calculators</a></p>
135        -->
136</div><!-- end of content -->
137<!--#include virtual="/en/inc/menu.inc.shtm" -->
138</body>
139</html>
Note: See TracBrowser for help on using the repository browser.
© 2008 - 2013 technikum29 • Sven Köppel • Some rights reserved
Powered by Trac
Expect where otherwise noted, content on this site is licensed under a Creative Commons 3.0 License