Changeset 229 in t29-www for en


Ignore:
Timestamp:
Jan 17, 2011, 8:34:28 PM (9 years ago)
Author:
sven
Message:
  • early-computers.shtm: Heriberts Übersetzung überarbeitet.
  • details1.shtm, details2.shtm, wang2200.shtm: Kleinigkeiten korrigiert

Es fehlen viele Seiten, die noch nicht übersetzt wurden.

Location:
en
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • en/computer/early-computers.shtm

    r228 r229  
    2222    <h2><!--#echo var="title" --></h2>
    2323
    24     <p>Today's kids think of the latest mobile devices when talking about "mini computers". In contrast, in the 1960s and the early 70s, a computer was always huge (like our <a href="univac9400.shtm">UNIVAC mainframe</a>), thus a 300kg computer was "mini". Early computers are well worth seeing due to their enormous size and the nice transparent auxillary devices.
    25        <br />There is a very important computer family that finally lead to today's (personal) computers: The development of the "Mini" computers from Digital Equipment Corporation (DEC), series PDP-8. The museum owns a complete production run from that devices: From the PDP-8 (also called Classic-8), year of manufacture 1965 to the PDP-8a (1975, this one is less important so it is located in the archive).
    26            <div class="box left clear-after">
    27       <img src="/shared/photos/rechnertechnik/dec/flip-chip-module.jpg" width="400" height="173" alt="Flip-Chip-Module" />
    28  
    29  <p> These computers have been documented by several very detailed functional and circuit descriptions like no other computer ever built. This is from today's perspective, a fluke. Only by the presence of these documents a repair is possible. While other manufacturers often stood back for fear of their circuits from unauthorized re-use (eg HP).<br>
    30 PDP computers were mainly used by scientists. With using of self-made interface cards it was possible to integrate existing equipment and experimental arrangements. DEC has prefabricated modules offered, which facilitated a yourself customizations.<br>
    31  The figure shows a typical module of the second Generation (1965) without ICs from the classic PDP-8 (left). In the middle is a small module of the 3rd Generation (from 1967) with ICs, which was used in the devices PDP-8i, PDP-8L and PDP-12. Right after all, an empty module, it can be fitted by the user for specific extensions to the periphery.
    32  </p></div>
    33            <br/>For further reading see the story about <a class="go" name="backlink-dec" href="/en/devices/dec-history.shtm">Rise and Fall of DIGITAL (Equipment Corporation)</a>.
     24    <p>Today's kids think of the latest mobile devices when talking about "mini computers".
     25           In contrast, in the 1960s and the early 70s, a computer was always huge (like our
     26           <a href="univac9400.shtm">UNIVAC mainframe</a>), thus a 300kg computer was "mini".
     27           Early computers are well worth seeing due to their enormous size and the nice
     28           transparent auxillary devices.
     29       <br />There is a very important computer family that finally lead to (today's)
     30           personal computers: The development of the "Mini" computers from Digital Equipment
     31           Corporation (DEC), series PDP-8 and PDP-12 (both 12-bit architecture). The museum
     32           owns a complete production run from that devices: From the PDP-8 (also called
     33           Classic-8), year of manufacture 1965 to the PDP-8a (1975, this one is less
     34           important so it is located in the archive). PDP means Programmed Data Processor.
     35        </p>
     36        <div class="box left clear-after">
     37        <img src="/shared/photos/rechnertechnik/dec/flip-chip-module.jpg" width="400" height="173" alt="Flip-Chip-Module" />
     38                <p>The manuals of these computers are very detailed, with full circuit
     39                   documentation. There never have been any other computer with such an
     40                   elaborate documentation. For restoration purposes these manuals are
     41                   indispensable. Even in those days, other manufacturers kept their
     42                   blueprints in secret for fear of unauthorized re-use (e.g. HP).
     43                   <br/>PDP computers were especially used by scientists. By using self-made
     44                   (CPU) interface boards, already existing (experimental) equipment could easily
     45                   migrated to the new hardware. DEC even offered prefabricated boards to
     46                   encourage own extension development.
     47                   The figure above shows a typical second generation module (1965) without ICs
     48                   from the classic PDP-8 on the left. In the middle is a smaller third generation
     49                   module with ICs (from 1967) which was used in the PDP-8i, PDP-8L and PDP-12.
     50                   On the right is an empty module just suitable for being equipped by the
     51                   user for interfaces to own periphery.
     52                </p>
     53        </div>
    3454       
    35    
     55        <p>For further reading see the story about <a class="go" name="backlink-dec"
     56        href="/en/devices/dec-history.shtm">Rise and Fall of DIGITAL (Equipment Corporation)</a>.</p>
     57
    3658    <!--alter Text: The legendary Classic PDP 8 from the company DEC (year of manufacture 1965) can be admired among others. Furthermore you can see the PDP 8L or <a class="go" href="/en/devices/pdp_8I.shtm">PDP 8I</a> (year of manufacture 1967, a lot of periphery) and the laboratory computer <a class="go" href="/en/devices/lab_8e.shtm">LAB8e</a> (1971).
    3759    Because of constantly growing claims for storage capacity, backing storage (19-zoll drawers for 4kB with a weight of 20kg) was offered. The PDP 8I could not administrate more than 32kB.
    3860    <br />THe PDP 8L, a trimmed-down version of the PDP 8I, cannot hold more than 8 kB.</p> -->
    3961
    40        
    4162    <h3>Classic PDP-8</h3>
    42 <div class="box left">
    43        <img src="/shared/photos/rechnertechnik/dec/pdp-8.jpg" width="400" height="474" alt="PDP 8 Classic" /></div>
    44             <div class="box center" style="min-width: 840px;">
    45           <img src="/shared/photos/rechnertechnik/dec/pdp-8,pannel.jpg" width="400" height="300" alt="PDP-8 Bedienungspannel" /></div>
    46        <p class="bildtext"><small>Left: <b>PDP-8</b>Left picture with tape unit TU 580, paper tape reader and punch and hard disc DF32, picture above shows the console</small></p>
    47        
    48        
     63        <div class="box left">
     64       <img src="/shared/photos/rechnertechnik/dec/pdp-8.jpg" width="400" height="474" alt="PDP 8 Classic" />
     65        </div>
     66         <div class="box center" style="min-width: 840px;">
     67            <img src="/shared/photos/rechnertechnik/dec/pdp-8,pannel.jpg" width="400" height="300" alt="PDP-8 Bedienungspannel" />
     68        </div>
     69    <small>Left: <b>PDP-8</b> with tape unit TU 580, paper tape reader
     70              and hard disc DF32. Right: Operator panel</small>
     71
    4972        <p>
    5073         One of the museum highlights: The complete PDP-8 system with processor,
     
    5376         and a teletype as printer. The Classic PDP-8 is considered the world's first mass-produced
    5477         "minicomputer". Due it's use of ICs, unlike its predecessors, it is considered
    55                  a second-generation computer.</p>
     78                 a second-generation computer.
     79        </p>
    5680                 
    57                    <div class="box left clear-after">
    58           <img src="/shared/photos/rechnertechnik/dec/pdp8-fluegel.jpg" width="400" height="345" alt="PDP-8 Flügel" />
    59                 <p> This computer is built by a variety of different logic and register modules. The logical decisions are implemented in principle by a intelligent combination of NAND and NORs. Register, so fast latch, will be constructed with flip-flop circuits. The extensive wiring of the modules is done by the so-called "wire-wrap" technique, read the function in <a href="http://en.wikipedia.org/wiki/Wire_wrap">Wikipedia</a>. <br>
    60  This wire-wrap connections were applied to the 1980th in all greater computers. It is an easy way to connect in any direction lying modules to each other. At first the "wrapping" were made by hand and was later executed by machines. Even today there are still some wire-wrap-connections in test circuits.<br>
    61 The left picture shows the opened computer, with extended right wing. Here you can see the wire-wrap connections.</p></div>
    62                  
    63                  
    64                  
    65          
     81        <div class="box left clear-after">
     82                <img src="/shared/photos/rechnertechnik/dec/pdp8-fluegel.jpg" width="400" height="345" alt="PDP-8 Flügel" />
     83                <p>This computer features various different logic and register modules. All logic
     84                is only built with NAND and NOR gatters. Registers are constructed with flip-flop
     85                circuits. The extensive wiring of the modules (see picture) is called
     86                <a href="http://en.wikipedia.org/wiki/Wire_wrap">Wire wrapping</a>. This kind of
     87                connections were used in all bigger computers until the 1980s, since it is an
     88                easy way to connect two points which are not mounted on the same board or on the
     89                same level. In the early days this wiring was manually performed and later executed
     90                by machines. Even today there are still some wire-wrap-connections in testing
     91                environments.
     92                <br>
     93                The picture shows the uncovered computer with opened right wing where you can easily
     94                see the wire-wrap connections.</p>
     95        </div>
     96
    6697         <!-- The <b>Classic PDP 8</b> from DEC (Digital Equipment Corporation, Massachusetts):
    6798         He is considered to be the world's first mass-produced "minicomputer" (1965). "Mini" is relative: Only too very
     
    75106  <h3>PDP-8I</h3>
    76107    <div class="box left">
    77         <img src="/shared/photos/rechnertechnik/dec/pdp8i.jpg" alt="DEC PDP-8I" width="400" height="666" /> </div>
    78                 <div class="box center" style="min-width: 840px;">
     108        <img src="/shared/photos/rechnertechnik/dec/pdp8i.jpg" alt="DEC PDP-8I" width="400" height="666" />
     109        </div>
     110        <div class="box center" style="min-width: 840px;">
    79111                <img src="/shared/photos/rechnertechnik/dec/8i-pannel.jpg" width="400" height="292" alt="PDP 8i Bedienungspannel" />
    80                
    81       <p class="bildtext"><small>Left the PDP-8i system with two-DECtapes TU 55, hight-speed paper tape reader/punch PC 04, 563 CALCOM plotter (top) and a TELETYPE (not shown).
    82 Above: the computer console.</small></p></div>     
    83            
    84                                 <p>In 1967 were the first TTL ICs (transistor-transistor logic) of the 74xx series are available. DEC was with the computer 8i to the forefront in the development of [the term "8i" means "With <b>i</b>ntegrated circuits"]. One had the Long-term behavior (later defects) of these integrated circuits no experience. UNIVAC therefore set itself in 1969 rather more the 2 years later the proven DTL-technology in computers. Fortunately, the TTL ICs proved to be as stable as the DTL series. But the degree of integration was much higher, so that less space has been claimed.<br>
    85             DEC's first calculator with integrated circuits was not cheap. The CPU on
    86              alone (pictured in the center) without peripherals cost $27000 at that time.<br/>
    87              The main memory had a capacity of 8kB. While computing a "larg" problem, it was possible to swap
    88              programs or data to files on magnetic tape and read in afterward be reread. DEC developed
    89              an intelligent operating system (OS/8) which worked very efficiently with such little memory.
    90              It is very interesting to watch this computer working.</p>
    91             <p>If you have not been in the presence of this computer, you should know that it is quite large.
    92              With the plotter, it stands at a height of almost 7' (2m) and weighting at more than 600 lbs (300kg).</p>
    93             <p>The peripherals consist of two TU-55 (tape drives), a PC-04 (high speed paper tape reader),
    94              Calcomp 563 plotter (at the top) and of course a teletype (not pictured).</p>
    95        
    96                 <h3 id="pdp8L">PDP-8L</h3>
    97    
    98            <div class="box left clear-after">
    99       <img src="/shared/photos/rechnertechnik/dec/pdp-8L.jpg" width="400" height="360" alt="DEC PDP-8L" />
     112                <p class="bildtext"><small>Left: The PDP-8i system with two-DECtapes TU 55, hight-speed paper tape reader/punch
     113                        PC 04, 563 CALCOM plotter (top) and a TELETYPE (not shown). Above: the computer console.</small></p>
     114        </div>
     115     
     116          <p>In 1967 the first series 74xx TTL ICs (transistor-transistor logic) came on the market.
     117             DEC was at the bleeding edge, releasing the 8i ("with <b>i</b>ntegrated circuits"). No one
     118                 knew about the stability of the new ICs (later bugs). Therefore UNIVAC used the well established
     119                 DTL technology even two years after. Fortunately, the TTL ICs proved to be as stable as the DTL
     120                 series. Since the integration degree was much higher, less space has been needed for computers.
     121                 <br>DEC's first calculator with integrated circuits was very expensive. The CPU on alone
     122                 (in the picture: Left case, middle) cost US$ 27,000 without peripherals at that time.
     123         <br>The main memory had a capacity of 8kB. While computing a "large" problem, it was possible to swap
     124         programs or data to files on magnetic tape and read in afterward be reread. DEC developed
     125         an intelligent operating system (OS/8) which worked very efficiently with such little memory.
     126         It is very interesting to watch this computer working.</p>
     127         <p>If you have not been in the presence of this computer, you should know that it is quite large.
     128         With the plotter, it stands at a height of almost 7' (2m) and weighting at more than 600 lbs (300kg).</p>
     129         <p>The peripherals consist of two TU-55 (tape drives), a PC-04 (high speed paper tape reader),
     130         Calcomp 563 plotter (at the top) and of course a teletype (not pictured).
     131        </p>
     132
     133                 
     134        <h3 id="pdp8L">PDP-8L</h3>
     135        <div class="box left clear-after">
     136                <img src="/shared/photos/rechnertechnik/dec/pdp-8L.jpg" width="400" height="360" alt="DEC PDP-8L" />
     137                <p><small>PDP-8L (build in 1968) with HSR Paper Tape Reader</small></p>
     138               
     139                <p>Many DEC customers did not need the high memory capacity or installable options.
     140                Therefore DEC developed the stripped-down computer PDP 8L (<b>L</b>ow-cost) with
     141                only a few pre-wired installed options in the lower price range.
     142                The core memory had only 4kB capacity, it was extendable to 8kB with an external cabinet.
     143                <br>Our PDP-8L has many extensions: HSR (High Speed) paper tape reader, TC01 Tape Control
     144                with two drives TU55 and additional memory.
     145                <br>DEC invented the interpreted programming language <b>FOCAL</b> (Formulating Online
     146                Calculations in Algebraic Language), which allowed the user an interactive
     147                programming environment (like a Unix shell). This language is similar to BASIC, but
     148                slightly simpler. FOCAL required no operating system and ran smoothly with 4kB core
     149                memory and lacking mass storage.
     150        </div>
    100151 
    101  <p><small>PDP-8L (build in 1968) with HSR Paper Tape Reader</small></p>
    102  <p>Many users of DEC computers did not need the high capacity of memory and installable options. Therefore, DEC developed a stripped-down computer with only a few pre-wired installation options. The core memory had only 4kB capacity, but it was an additional external cabinet possible to get 8kB.
    103 <br>
    104 Our PDP-8L was "high" expanded: HSR (High Speed) paper tape reader, TC01 Tape Control with two drives TU55 and a additional memory.
    105 DEC developed its own dialogue programming-language "<b>FOCAL</b>" [Formulating Online Calculations in Algebraic Language], which allowed the user to stand in direct conversation with the computer. There is a direct compiler, each command is immediately translated into machine language. This language is similar to BASIC, but slightly simpler. FOCAL ran smoothly with 4kB core memory and the 8L was a small relatively powerful computer in the lower price range. (<b>L</b>ow-Cost, therefore, 8L).</p>
    106  
    107 </div>
    108  
    109 
    110         <h3 id="pdp12">PDP-12, LAB-12</h3>
     152
     153 <h3 id="pdp12">PDP-12, LAB-12</h3>
    111154 <div class="box left">
    112155      <img src="/shared/photos/rechnertechnik/dec/pdp-12.jpg" width="400" height="485" alt="DEC LAB-12" />
     
    132175               
    133176        <div class="box left">
    134       <img src="/shared/photos/rechnertechnik/dec/pdp-12-innen.jpg" width="297" height="676" alt="DEC LAB-12-Flip-Chips" /></div>
    135           <div class="bildtext">In the picture (left) you can see the 462 Flip-Chip-Boards in the frame.
    136           </div>
    137          <p> Our computer was very comfortable usable because many options are installed (in the parentheses stands the number of the required modules):<br>
    138          
    139         <small><b>AD12 [A-D-Control](12):</b><br>
    140         The AD12 includes 16 channels of input, 10bit output resolution and features up to 60kHz signals at 30dB down.<br>
    141           <b>DM12 [Data Break Multiplexer for KF12-B](6):</b><br>
    142         The DM12 provides the capability of operating up to three data break devices. The Data Break facility allows an I/O device to transfer information directly with the PDP-12 core memory on a cycle-stealing basis. This is particulary well suited for high-speed devices which transfer large amounts of information in block form. Peripheral I/O equipment  could reach a maximum transfer rate of 6,5 Mbit/sec.<br>
    143           <b>DP12A [TTY-Dataphone](4):</b><br>
    144          The DP12 options permit interfacing additional Teletypes and Modems. They are capable of accepting data asynchronously up to 100,000 baud. The units are designed for US-ASCII and meet the EIA-standard (RS232) requirements.<br>
    145           <b>DR12 [Relays and Control](1)</b><br>
    146           The relay buffer is a six-bit register connected to six relays that are mounted on the data terminal panel. They can be used for controlling experiments or external equipment not otherwise directly interfaced with the PDP-12 Computer. The states of the relays can be examinede at any time via the register.<br>
    147          
    148           <b>KE12 [Extended Arithmetik Element](14):</b><br>
    149           The EAE enables the CP (the DEC operating system) to perform arithmetic operations at higher speed. The ALU is extended by asynchronous logic such as a 12-bit Multiplier Quotient Register and a 5-bit Step Counter.  These components are used by auxillary CPU instructions (opcodes).<br>
    150           <b>KF12 [Multi Level](54):</b><br>
    151           The Multi-Level Automatic Priority Interrupt is designed to reduce the CPU overhead during the servicing of program interrupts. Up to 15 levels of interrupts can be accomodated with each level having an unique vector address. The interrupts can be accepted from other options (CPU extensions) or from up to six external devices. Storing of priority and vectoring of interrupt service routines is performed with a Stack.<br>
    152           <b>KT12 [Time-Sharing Option](2):</b><br>
    153           This module provides the additional logic circuits required for the PDP12 Time Sharing System. Having satisfied the minimum equipment, it perimts up to 16 users to operate their individual programs in an apperantly simultaneous manner. The system is controlled by a group of subprograms called „TSS/12 Monitor“.<br>
    154           <b>KW12-A [Real Time Clock](19):</b><br>
    155           The RTC can be used to generate Program Interrupts over a range of intervals of 2.5us to 40.96s; detect external and internal events in order to count them, measure them against a time base, measure the interval between them, use them as time base standard or control sample times of A/D conversions. In our system this module was used to connect the german longwave time signal radio station DCF77 in order to recieve the atomic clock time from the German master clocks in Frankfurt.</p></small>
    156           <div class="box left no-copyright">
    157       <img src="/shared/photos/rechnertechnik/dec/pdp-12anwendung.jpg" width="400" height="366" alt="Typischer Einsatz einer PDP-12 in der Wissenschaft" />
    158          
    159  <p class="bildtext"><small>Left: A typical use of a PDP-12 in the science about 1970th [BookResource:"digital products and applications, 1971"]</small></p></div>
     177      <img src="/shared/photos/rechnertechnik/dec/pdp-12-innen.jpg" width="297" height="676" alt="DEC LAB-12-Flip-Chips" />
     178        </div>
     179        <p>The picture on the left shows the PDP-12 inner life with all 462 Flip-Chip-Boards.</p>
     180
     181        <p>By having all the following options, our computer was very comfortable
     182        (the number in parentheses indicates the number of neccessary boards):</p>
     183
     184        <dl>
     185                <dt>AD12 [A-D-Control] (12 modules):
     186                <dd>The AD12 includes 16 channels of input, 10bit output resolution and features
     187                    up to 60kHz signals at 30dB down.
     188               
     189                <dt>DM12 [Data Break Multiplexer for KF12-B] (6 modules):
     190                <dd>The DM12 provides the capability of operating up to three data break devices.
     191                    The Data Break facility allows an I/O device to transfer information directly
     192                        with the PDP-12 core memory on a cycle-stealing basis. This is particulary
     193                        well suited for high-speed devices which transfer large amounts of information
     194                        in block form. Peripheral I/O equipment  could reach a maximum transfer rate
     195                        of 6,5 Mbit/sec.
     196               
     197                <dt>DP12A [TTY-Dataphone] (4 modules):
     198                <dd>The DP12 options permit interfacing additional Teletypes and Modems. They are
     199                    capable of accepting data asynchronously up to 100,000 baud. The units are
     200                        designed for US-ASCII and meet the EIA-standard (RS232) requirements.
     201               
     202                <dt>DR12 [Relays and Control] (1 module):
     203                <dd>The relay buffer is a six-bit register connected to six relays that are mounted
     204                    on the data terminal panel. They can be used for controlling experiments or
     205                        external equipment not otherwise directly interfaced with the PDP-12 Computer.
     206                        The states of the relays can be examinede at any time via the register.
     207               
     208                <dt>KE12 [Extended Arithmetik Element] (14 modules):
     209                <dd>The EAE enables the CP (the DEC operating system) to perform arithmetic
     210                    operations at higher speed. The ALU is extended by asynchronous logic such as a
     211                        12-bit Multiplier Quotient Register and a 5-bit Step Counter.  These components
     212                        are used by auxillary CPU instructions (opcodes).
     213                       
     214                <dt>KF12 [Multi Level] (54 modules):
     215                <dd>The Multi-Level Automatic Priority Interrupt is designed to reduce the CPU
     216                    overhead during the servicing of program interrupts. Up to 15 levels of interrupts
     217                        can be accomodated with each level having an unique vector address. The interrupts
     218                        can be accepted from other options (CPU extensions) or from up to six external
     219                        devices. Storing of priority and vectoring of interrupt service routines is
     220                        performed with a Stack.
     221                       
     222                <dt>KT12 [Time-Sharing Option] (2 modules):
     223                <dd>This module provides the additional logic circuits required for the PDP12 Time
     224                    Sharing System. Having satisfied the minimum equipment, it perimts up to 16 users
     225                        to operate their individual programs in an apperantly simultaneous manner. The
     226                        system is controlled by a group of subprograms called "TSS/12 Monitor".
     227                       
     228                <dt>KW12-A [Real Time Clock] (19 modules):
     229                <dd>The RTC can be used to generate Program Interrupts over a range of intervals of
     230                    2.5us to 40.96s; detect external and internal events in order to count them,
     231                        measure them against a time base, measure the interval between them, use them as
     232                        time base standard or control sample times of A/D conversions. In our system
     233                        this module was used to connect the german longwave time signal radio station
     234                        DCF77 in order to recieve the atomic clock time from the German master clocks
     235                        in Frankfurt.
     236        </dl>
     237       
     238        <div class="box left no-copyright">
     239       <img src="/shared/photos/rechnertechnik/dec/pdp-12anwendung.jpg" width="400" height="366" alt="Typical PDP-12 in scientific environment" />
     240           <p class="bildtext"><small>Typical picture in the 1970s: PDP-12 in the scientific domain</small></p>
     241        </div>
    160242 
    161           <p>Other cabinets are in the calculator, which allows the connection of additional peripherals:</p>
    162          
    163           <p><small><b>AA50P [12 Bit DAC Controller]:</b> Cabinet for placement of additional digital-analog converters. 3 of 6 possible are built in.<br>
    164           <b>BA12 [Peripharal Expander]:</b> Is a Cabinet to extend the periphery, for example Paper Tape Reader/Punch PC05, punch card Readers, etc.<br>
    165           <b>DW08A [I/O Bus Converter]:</b> This box allowed the connection of units with "negative bus system". Negative logic was used at times of germanium technology (PNP transistors), (for example disk drive with fixed heads "DF32").<br>
    166           <b>DW08E [I/O Bus Converter]:</b> Is a Bus-Converter witch converts the Signals from PDP-12 (or LINC8, PDP8i) to PDP-8e OMNIBUS Format. Primatily it provides an interface between a Family of -8 Bus and a RK8 Disk-System (RK05 or Plessey PM DD/8).<br>
    167           <b>BM812 [Memory Expansion Box]:</b> Memory expansion box that is capable of expending either a PDP8i or PDP12 from 8kB to 32kB with MM8e-stacks (like in PDP-8e).</small></p>
    168          
    169           <p>The system is expanded very extensive. This method was common at that time. One first applied a computer in the basic version, which was still very affordable. Later sukzzesive the above listed options are added. Be distributed to the high acquisition costs over several years and the computer was always up to date.
    170 
    171 </p>
    172 
    173 
    174 
    175          <h3>Lab-8e, PDP-8e</h3>
    176    <div class="box left">
    177       <img src="/shared/photos/rechnertechnik/dec/lab8e.jpg" width="400" height="461" alt="DEC LAB-8e" />
    178  </div>
    179  <div class="box center" style="min-width: 840px;">
    180           <img src="/shared/photos/rechnertechnik/dec/pdp-8e,pannel.jpg" width="400" height="300" alt="PDP-8e Bedienungspannel" />
    181           </div>
    182         <!-- other picture -->
    183         <div  class="bildtext">
    184            
     243        <p>The computer is equipped with further cabinets which allow much more peripherals:</p>
     244       
     245        <dl>
     246                <dt>AA50P [12 Bit DAC Controller]
     247                <dd>Cabinet to upgrade the number of digital-analog converters (half filled in our setup)
     248               
     249                <dt>BA12 [Peripharal Expander]
     250                <dd>Cabinet for peripheral extension, e.g. paper tape reader/puncher, PC05, card
     251                    readers, etc.
     252               
     253                <dt>DW08A [I/O Bus Converter]
     254                <dd>Cabinet to connect "negative bus system" units. The "negative logic level" was used
     255                    at the time of germanium transistors (PNP), for example the DF32 disk drive with
     256                        fixed heads.
     257
     258                <dt>DW08E [I/O Bus Converter]
     259                <dd>This plug-in for the smaller PDP-8e converts the PDP-8, -8i and -12 bus to the
     260                    OMNIBUS system from the PDP-8e. Thus all 8e interfaces could be connected, e.g. the
     261                        RK8E interface (Digitl RK05) or Plessey PM DD/8 disk drives.
     262               
     263                <dt>BM812 [Memory Expansion Box]
     264                <dd>Memory expansion box that is capable of expending either a PDP8i or PDP12
     265                    from 8kB to 32kB with MM8e-stacks (like in the PDP-8e).
     266        </dl>
     267       
     268        <p>This system is fully developed. This was a common approach at that time: At first the
     269           computer was purchased in the basic version which was barely affordable. Afterwards
     270           more options were installed step-by-step. That way the enormous acquisition costs
     271           were distributed over several years and the computer was always up to date.
     272    </p>
     273
     274
     275
     276         <h3 id="8e">Lab-8e, PDP-8e</h3>
     277        <div class="box left">
     278                <img src="/shared/photos/rechnertechnik/dec/lab8e.jpg" width="400" height="461" alt="DEC LAB-8e" />
     279        </div>
     280        <div class="box center" style="min-width: 840px;">
     281                <img src="/shared/photos/rechnertechnik/dec/pdp-8e,pannel.jpg" width="400" height="300" alt="PDP-8e Bedienungspannel" />
     282        </div>
     283    <div class="bildtext">
    185284            <p>The successor of the PDP-8i was the PDP-8e (1970). This computer came with an
    186285             internal bus system, so you could easily attach any peripherals using interface cards. This
     
    193292                <li>3 x TU 56 (double tape drive)</li>
    194293                <li>A/D- and D/A-converter</li>
    195             </ul></div>
    196         <div class="box left clear-after">
    197                         <img src="/shared/photos/rechnertechnik/dec/8e-module.jpg" alt="8e-Module" width=400" height="175"/>
    198      
    199           <p>
    200           In the picture you see on the left a module for self-construction of peripheral adaptations, here are bus amplifier, etc. already installed. Additionally you could use any ICs, and connect with wire-wrap or soldered wire.<br>
    201           Right is a typical module with many TTL ICs. From both modules is only part visible.</p>
     294            </ul>
     295        </div>
     296    <div class="box left clear-after">
     297                <img src="/shared/photos/rechnertechnik/dec/8e-module.jpg" alt="8e-Module" width="400" height="175"/>
     298                <p>The picture on the left shows a board for own peripheral interfaces. In this unit,
     299                   bus amplifiers, etc. are already mounted. You could install your own ICs in front of
     300                   them and connect them with Wire-Wrap or soldered wires.
     301                   On the right is a typical module with a lot of ICs. Both modules are only partially
     302                   visible.
     303                </p>
    202304    </div>
    203305
  • en/details1.shtm

    r33 r229  
    7373  </tr>
    7474  <tr>
    75     <td><b>FRIDEN 130</b>[1965]</td>
     75    <td><b>FRIDEN 130, FRIDEN 132</b>[1965]</td>
    7676    <td>delay line memory</td>
    7777    <td>-</td>
    7878    <td>The world's first desk calculator with display on
    7979        cathode ray tube; 4 registers are displayed
    80         (with germanium transistors)</td>
     80        (with germanium transistors). Type 132 is featured with
     81        automatic square root calculation.</td>
    8182  </tr>
    8283  <tr>
  • en/details2.shtm

    r33 r229  
    4242  </tr>
    4343  <tr>
    44     <td class="b">DEC Classic 8</td>
     44    <td class="b"><a href="/en/computer/early-computers.shtm#Classic_PDP-8">DEC Classic 8</a></td>
    4545    <td>1965</td>
    4646    <td>Big tape deck "580"(**), hard disc DF 32**, 12 KB additional
     
    5151  </tr>
    5252  <tr>
    53     <td class="b"><!--<a href="geraete/pdp_8I.shtm">-->DEC PDP 8 I<!--</a>--></td>
     53    <td class="b"><a href="/en/computer/early-computers.shtm#PDP-8I">DEC PDP 8 I</a></td>
    5454    <td>1967-69</td>
    5555    <td>Teletype</td>
     
    5858  </tr>
    5959  <tr>
    60     <td class="b">DEC PDP 8L</td>
     60    <td class="b"><a href="/en/computer/early-computers.shtm#pdp8L">DEC PDP 8L</a></td>
    6161    <td>1968-70</td>
    6262    <td>teletype-printer, two additionall memories (now 12K), two DECTAPEs
     
    6868  </tr>
    6969  <tr>
    70     <td class="b"><!--<a href="geraete/lab_8e.shtm">-->DEC LAB 8e<!--</a>--></td>
     70        <td class="b"><a href="/en/computer/early-computers.shtm#pdp12">DEC PDP 12</a></td>
     71        <td>1969-73</td>
     72        <td>Teletype, etc.</td>
     73        <td>Scientific laboratory computer with LINK-8 and PDP-8 mode.<br/>Fully equipped
     74            computer with more than 450 modules.
     75  <tr>
     76    <td class="b"><a href="/en/computer/early-computers.shtm#8e">DEC LAB 8e</a></td>
    7177    <td>1971/72</td>
    7278    <td>2 tape desks TU56, highspeed-punchcard reader and puncher,
    7379        removable disk drive RK05, 8 inch floppy RX01, monitor VR12,
    74         AD-DA-converter, teletype</td>
     80                AD-DA-converter, teletype</td>
    7581    <td>Laboratory Computer that weights half a ton</td>
    7682  </tr>
  • en/devices/wang2200.shtm

    r177 r229  
    2929
    3030<div class="box left no-copyright">
    31   <img src="/shared/photos/rechnertechnik/wang2200.jpg" width="336" height="456" alt="Wang 2200" />
     31  <img src="/shared/photos/rechnertechnik/wang2200-prospekt.jpg" width="336" height="456" alt="Wang 2200" />
    3232  <div class="bildtext">
    3333      <p>Original brochure on the left. You see only the terminal witht the BASIC-keyboard. The CPU is located in a seperate suitcase. The power supply is suited in an own case.</p>
Note: See TracChangeset for help on using the changeset viewer.
© 2008 - 2013 technikum29 • Sven Köppel • Some rights reserved
Powered by Trac
Expect where otherwise noted, content on this site is licensed under a Creative Commons 3.0 License